European Integrated Hydrogen Project - Phase II

Results from RBMI Workshop

London 29-30th January 2004

Sub-task 2.4: Health Environment and Safety (HES)

S. Selmer-Olsen, DNV

EIHP2 WP2 – Refuelling Station

Sub-task 2.4: objectives (recap)

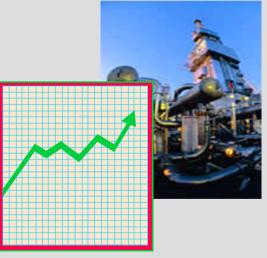
> Apply a risk based method to develop input to maintenance and inspection guidelines for a generic hydrogen refuelling station

EIHP2 WP2 – Refuelling Station

Risk Based Maintenance & Inspection

➤The RBMI method is based on the philosophy that maintenance efforts should be focused on items that constitute the largest risk

➢Risk is considered to be dependent on probability and consequence of failures, where consequences may be


- Additional costs or lost income
- Potential injuries
- Environmental emissions

Risk Based Maintenance & Inspection

- Optimise resources needed to operate, inspect, maintain and improve installations
- Do not compromise on safety, reliability or environmental standards.

EIHP2 WP2 – Refuelling Station

Link: The EU project RIMAP (2001-2004)

• Objective:

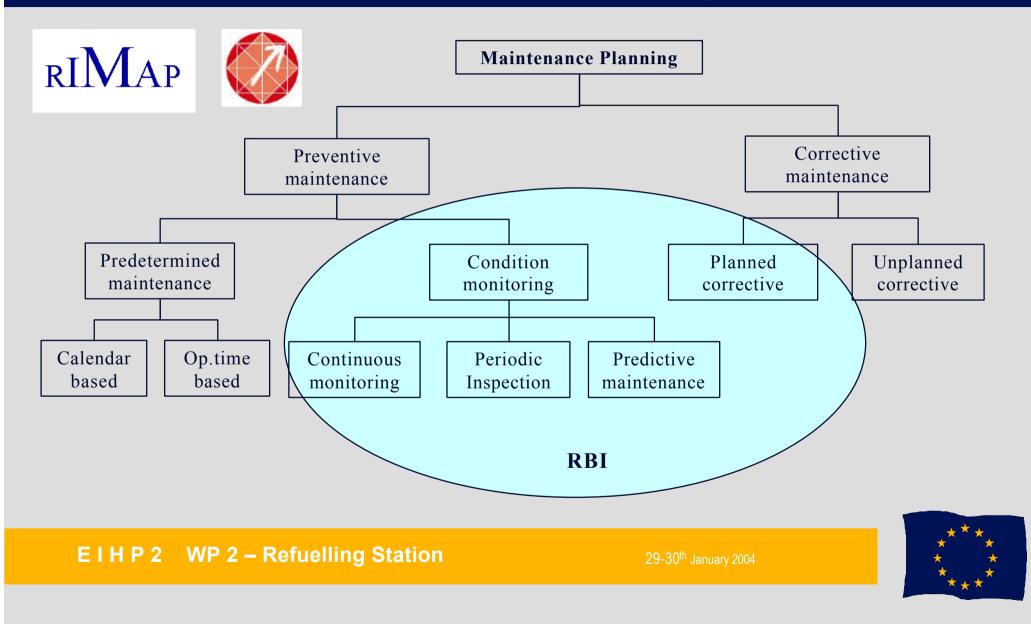
- To develop a unified approach for making risk based decisions within inspection and maintenance planning.
- Main deliverables:
 - A guideline for developing and maintaining a risk based inspection and maintenance plan.
 - Industry specific workbooks for the steel, chemical, power and petrochemical industry.
 - The technical basis for a future European standard in this area.

• Partners:

 DNV (Co-ordinator), BV, Corus, DOW, ESB (Ireland), EnBW, ExxonMobil Chemical, Hydro Agri, JRC-Petten, MBeL, MPA, Siemens, Solvay, TNO, TÜV Süddeutschland, VTT

• For more:

http://research.dnv.com/rimap

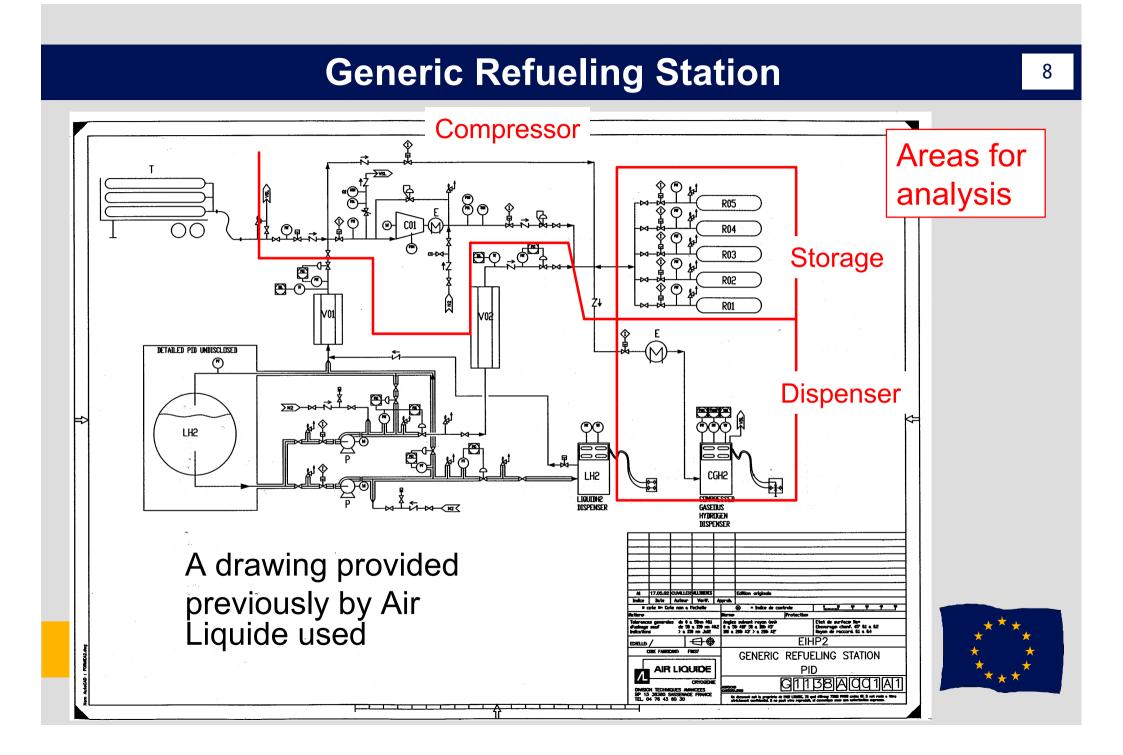


Maintenance Planning

6

WP 2.4 Workshop 19-20th January, Høvik

> The exercise:


- RBMI on generic hydrogen refuelling station based on WP5.2
- Risks associated with malfunction of each of the individual components of the refuelling station.
- Some guidance on focus for maintenance efforts tfor an acceptable level of safety and operational reliability in a cost effective way.

Participants were:

- Peter Newboult (Air Products)
- Pål Kittilsen (Norsk Hydro)
- Angunn Engebø (DNV)
- Madeleine Brien (DNV)
- Mikael Hägerby (DNV)

Approach for RBMI: FMEA

Failure Modes and Effects Analysis - a qualitative analysis that systematically examines each possible failure mode within a system.

> Failure modes of components are studied:

- > Probability of occurrence
- Consequence
- Prevention/detection

> Preventative actions may then be identified and prioritised

9

EIHP2 WP2 – Refuelling Station

Consequence levels (ref. WP 5.2)

Level	Description	Definition			
		People	Environment	Material damage	
1	CATASTROPHIC	Several fatalities	Time for restitution of ecological resource such as recreation areas, ground water >5 years	Total loss of station and major structural damages outside station area	
2	SEVERE LOSS	One fatality	Time for restitution of ecological resource 2 - 5 years	Loss of main part of station. Production interrupted for months.	
3	MAJOR DAMAGE	Permanent disability Prolonged hospital treatment	Time for restitution of ecological resource < 2 years	Considerable structural damage Production interrupted for weeks	
4	DAMAGE	Medical treatment Lost time injury	Local environmental damage of short duration < 1 month??Minor structural Minor production influence		
5	MINOR DAMAGE	Minor injury Annoyance Disturbance	Minor environmental damage	Minor	

EIHP2 WP2 – Refuelling Station

Probability levels (ref. WP 5.2)

Level	Description	Definition	Frequency	
А	IMPROBABLE	Possible, but may not be heard of, or maybe experienced world wide.	About 1 per 1000 years or less	
В	REMOTE	Unlikely to occur during lifetime/operation of one filling station	About 1 per 100 years	
С	OCCASIONAL	Likely to occur during lifetime/operation of one filling station	About 1 per 10 years	
D	PROBABLY	May occur several times at the filling station	About 1 per year	
Е	FREQUENT	Will occur frequently at the filling station	About 10 per year or more.	

EIHP2 WP2 – Refuelling Station

Risk Matrix (ref. WP 5.2)

		PROBABILITY (per year)				
		A (<0.001)	B (0.01-0.001)	C (0.1-0.01)	D (1-0.1)	E (10-1)
•	1 (Catastrophic)	Н	Н	Н	Н	Н
ence ty	2(Severe loss)	М	Н	Н	Н	н
Consequence severity	3 (Major damage)	М	М	Н	Н	н
	4 (Damage)	L	L	М	М	Н
Ŭ	5 (Minor damage)	L	L	L	L	М

Results

Based on the risk corresponding to each component and the redundancy available, three different maintenance intervals were proposed:

Frequent maintenance-

 \geq (High risk) routine process by operators, which could be even more often than manufacturer recommendation.

> Regular maintenance-

 \geq (Medium risk) reflects the frequency of use or wear on the equipment and at a minimum meets manufacturer requirements.

Intermittent maintenance-

> (Low risk) Maintenance meets manufacturer requirements but the frequency of interventions reflects consequence of equipment failure and frequency of use.

EIHP2 WP2 – Refuelling Station

Results

Maintenance actions and intervals were identified for every component or type of component (in the examined filling station)

	Frequent	Regular	Intermittent
Components	5	14	8

The dispensing unit constitutes the greatest risk for two reasons:

- Frequent public use and maltreatment (human error)
- Likelihood of someone being in the vicinity upon failure

EIHP2 WP2 – Refuelling Station

Comments

Study Limitations:

Appropriate time to examine detailed design component by component

Examined one "generic" design

Component detailing not uniform

EIHP2 WP2 – Refuelling Station

Conclusions

- Provided input to WP2.3 on issues related to inspection and maintenance.
- The main focus was on CGH2 compressor, storage and dispenser system.
- Issues related to on site hydrogen production and LH not covered.
- The results obtained in WP5.2 used as input.

Conclusions

The RBMI approach is feasible for refueling stations, but...

- Analysis should be installation-specific
- More detailed maintenance procedures should be included

➤The time required for a detailed and complete analysis for a specific location therefore will exceed what was spent in this workshop exercise under WP 2.4

Conclusions

Maintenance scheduling should consider manufacturer recommendations along with risk based findings

➢Dispenser system most critical. To be operated by trained users. Training users can reduce risks.

It is recommended to develop a best industry practice (code) for RBMI of refueling stations based on a more complete and validated study. EIHP3 ?

DNV Report No. 2004-0114 issued for comments. Main comments received are now included.

EIHP2 WP2 – Refuelling Station