

FUEL CELL CLUSTER WORKSHOP

FUEL CELL TECHNOLOGY RESEARCH AND DEVELOPMENT TOWARD INTEGRATED SYSTEM OPTIMIZATION

GÖTEBORG - JUNE 21ST, 2001

Fuel Cell Vehicle Development and Commercialization Issues

- ❖ INFRASTRUCTURE FOR PRODUCTION AND DISTRIBUTION OF SIGNIFICANT HYDROGEN QUANTITY (2015-2020)
- ❖ ON BOARD HYDROGEN STORAGE ADEQUATE FOR RANGE COMPARABLE TO THAT OF CONVENTIONAL VEHICLE
- **❖ ON BOARD FUEL PROCESSING ADN WATER MANAGEMENT**
 - CO CLEAN-UP (<50 ppm)
 - COLD START AND TIME TO FULL POWER
 - TRANSIENT RESPONSE
- **❖ AIR SUPPLY SYSTEM**
- > ASPECT TO BE ADDRESSED
 - WEIGHT, VOLUME
 - INTEGRATION
 - LIFE
 - SAFETY
 - ENERGY EFFICIENCY
 - COST

Fuel Cell Technologies Validation

- Coordinated programs with different categories of vehicles, systems and components and fuels in field operation:
 - city car,city van, multipurpose car, buses,...
 - stack, reformer, H2 storage,...
 - infrastructure for H2, fuel supply with common interfaces

Objectives

- vehicles and components operation assessment
- performance evaluation efficiency assessment
- safety aspect analysis
- interaction with standards under definition

Proposed Programs Structure

- Initial phase of different programs should include definition of common procedure for testing operational performance and consumption.
- ❖ Safety aspect should take into account the relevant international standards(ISO TC22/SC21)which are in elaboration, for possible interactions.
- Infrastructure should be realized with commonly defined interfaces (standardization).
- ❖ Final phase of validation should include existing vehicles, activities enabling comparative assessment for both vehicles, systems, components and infrastructures.
- Intermediate results and outcomes should be transferred as a feed back at technology level

Standards for Electrically Propelled Road Vehicles Performance and Emissions

ITEM	STANDARDIZATION BODY		INTERNATIONAL LEGAL REQUIREMENTS
	CEN	ISO	ECE / ONU
ROAD OPERATING ABILITY			
1 PURE ELECTRIC VEHICLES	EN 1821-1	8715	R.68 (Amendment)
2 THERMAL ELECTRIC HYBRIDS	EN 1821-2	NWIP	
3 FUEL CELL HYBRID VEHICLES	pr EN 1821-3 (NWIP)		
4 PURE FUEL CELL VEHICLES	pr EN 1821-4 (NWIP)		
ENERGY PERFORMANCE			
1 PURE ELECTRIC VEHICLES	EN 1986 -1	8714	R.101
2 THERMAL ELECTRIC HYBRIDS	EN 1986 -2	NWIP BASED ON CEN, JEVA, SAE	R.101 (Proposed Amendment)
3 FUEL CELL HYBRID VEHICLES	pr EN 1986-3 (NWIP)		
4 PURE FUEL CELL VEHICLES	pr EN 1986-4 (NWIP)		
EMISSIONS			
1 THERMAL ELECTRIC HYBRIDS	EN 13444-1	NWIP BASED ON CEN, JEVA, SAE	R.83 (Proposed Amendment)
2 FUEL CELL HYBRID VEHICLES	pr EN 13444-2 (NWIP)		
3 PURE FUEL CELL VEHICLES	pr EN 13444-3 (NWIP)		

⁼ Approved / Published

Standards for Electrically Propelled Road Vehicles Safety Requirements

	ITEM	STANDARDIZATION BODY		INTERNATIONAL LEGAL REQUIREMENTS
		CEN	ISO	ECE / ONU
	REQUIREMENTS FOR ELECTRIC / HYBRID VEHICLES			
	Part 1 ON BOARD ENERGY STORAGE	EN 1987-1	6469-1	
Ī	Part 2 FUNCTIONAL SAFETY MEANS AND PROTECTION AGAINS FAILURES	EN 1987-2	6469-2	R.100
	Part 3 PROTECTION OF USERS AGAINST ELECTRICAL HAZARDS	EN 1987-3	6469-3	
	GASEOUS EMISSIONS PRODUCED BY BATTERIES	WG4-13	SC21-270 (NWIP) BASED ON SAE J1718	R.100 (Proposed Amendment)
	FUEL CELL POWERED ROAD VEHICLES		Europe Japan USA	
	Part 1 SAFETY MEANS AGAINST HYDROGEN HAZARDS		WG1 71 80	
	Part 2 FUNCTIONAL SAFETY MEANS		WG1 72 78	
	Part 3 PROTECTION OF USERS AGAINST ELECTRICAL HAZARDS		WG1 73 79 \ \ 83 84	
	ON BOARD ELECTROCHEMICAL Part 4 ENERGY STORAGE FOR THE PROPULSION SYSTEMS		WG1 74	
	FUEL CELL SYSTEM		WG1 77	
	BASIC CONSIDERATIONS FOR THE SAFETY OF HYDROGEN SYSTEMS		TC197N166-DPASS15916	

= Approved / Published

NWIP = New Work Item Proposal

Parameters for fuel storage systems

- Weight
- Volume
- Costs
 - Purchasing
 - Operative
- Refuelling time
- Life

Options for hydrogen storage system

NOWADAYS

Compressed (pressure range: 200 bar up to 700 bar) Degree of completity

Liquid (criogenic at both ambient pressure and pressurized)

Metal Hydride (High or Low Temperature)

THE FUTURE?

Study phase

Nanostructures (carbon nanotubes, ...)

Comparison of hydrogen storage systems

COMPRESSED HYDROGEN

In favor:

- storage systems are well known and in development
- some vehicles already have infrastructure for gaseous fuels
- low weight of next generation systems

Adverse:

- low energy density (kg/l)
- energetic costs associated to high pressure vessels (> 500 bar)
- safety aspects of the transportation of a pressurized fuel

LIQUID HYDROGEN

In favor:

energy density is about 3.5
 energy density of compressed
 hydrogen at 300 bar

Adverse:

- energetic costs for liquefaction
- amount of gas released due to daily evaporation rate for small tank
- temperature stratification
- careful in maintenance operations

METAL HYDRIDE

In favor:

- energy density higher than compressed hydrogen storage system
- hydrogen release with cathode exhaust stream (LT MH)
- low pressure system

Adverse:

- <u>hydrogen mass content in</u> LTMH
- dynamic response of the system
- fatigue operation resistance
- number of required auxiliaries

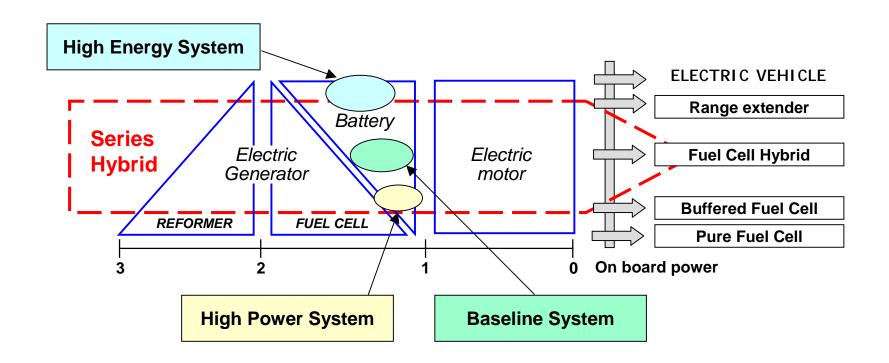
Hydrogen Storage System Alternatives

Solution to be investigated

- Metal hydrides adsorption
- Nanotubes / microfibers adsorption
- High pressure compressed
- Liquefied

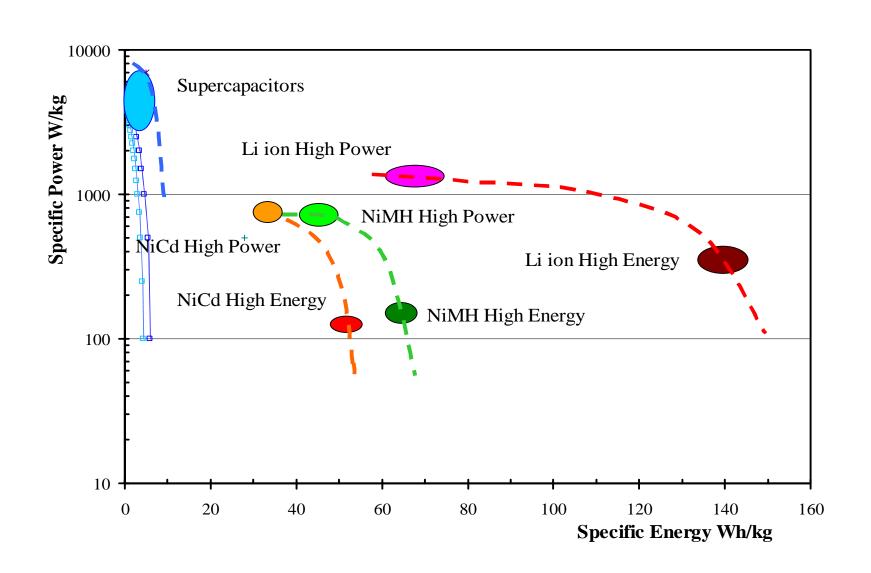
Aspects to be analyzed

- Safety
- Infrastructure / refilling interface
- Technology study
- Economical
- Well to wheel (well to storage output) efficiency



System Architecture for Fuel Cell and Battery Vehicle

Systems Architecture	Fuel Cell Sizing	Use	Storage unit features and management
Pure electric, battery povered	==	Urban	High energy Recharge from mains
Battery, powered with fuel cell APU	Reduced (average power of urban and extraurban cycle)	Urban and extraurban with range extender	High energy Recharge from mains
Hybrid with buffer	Sized to meet continuous Vmax	General purpose suburban	Peak Power (battery or supercapacitor)
Pure Fuel Cell	Sized for the maximum power requested	General purpose extraurban	= =



System Architectures for Fuel Cell Vehicles

Comparison Power vs. Energy Storage

Cluster Land Transport by Fuel Cell Technology

Cluster Administrator: ika PROFUEL ERK6-CT1999-00023 **On-Board Gasoline Processor for Fuel Cell Vehicle Application FUERO** ERK6-CT1999-00024 Partners: Johnson Matthey, CRF, ECN, FEV, **Fuel Cell Systems and Components** ANSALDO, Politecnico di Torino, Volvo General Research for Vehicle Applications Coordinator: Johnson Matthey Study on Fuel alternatives - Life cycle ERK6-CT1999-00012 BIO-H2 analys. Production of clean Hydrogen for Fuel Cell by Systems specification Reformation of Bioethanol System integration studies Partners: CRF, ENEA, PCA, REN, IRC, URE, UPAT, ECN •Modelling Interface for components Coordinator: CRF Components specifications •Test procedures definition **ASTOR** NNE5-1999-20138 •State of the art assessment – Benchmarking **Assessment & Testing of Advanced Energy** new component testing and evaluation Storage System for Hybrid Electric Vehicle Life cycle assessment (Modelling) Partners: VW, BMW, CRF, DaimlerChrysler, OPEL, Demontrators definition PSA. Renault, Volvo •Fuel cell general assessment Coordinator: VW Cluster coordination ERK6-CT1999-00025 PEM-ED Proton exchange membranes for application ika, CRF, PSA, RENAULT, VOLVO, Partners: in medium temperature electrochemical devices Partners: FuMA-Tech. Nuvera ... Coordinator: ika Coordinator: FuMA-Tech Steering committee: Car manufacturers **AMFC Advanced Methanol Fuel Cell Experimental Performance and** Partners: AB Volvo, Tech. University of Denmark, Life Cycle Assessment of FC Vehicles University of Newcastle, Norwegian University of Science and Tech., Proton Motor FC, den Demo Demo Demo norsk stats oljeselskap, Partners: Partners: Partners: Coordinator: AB Volvo Car Makers Car Makers Car Makers Comp.Manuf Comp.Manuf. Comp.Manuf. DREAMCAR Research Inst. Research Inst. Research Inst. **Direct Methanol Fuel Cell Development for** Coordinator: Coordinator: Coordinator: **Hvbrid Car** Car Maker Car Maker Car Maker Partners: SODETEG, CRF, CRN-ITAE, Solvay, Ramot Coordinator: SODETEG